Blog
  • What are the formulas to do the battery charger sizing calculation?

    What are the formulas to do the battery charger sizing calculation?

    Nov , 03 2021
    From our long experience of providing industrial battery charger solutions to our customers and partners, we have seen that there are some basic questions that are always asked. One of the basic questions we are always asked by our valuable customers is “what are the formulas needed to do the battery charger sizing calculations?” Here we are sharing the basic formulas for your convenience. . CHARG...
    more
  • Why small, low-cost batteries are generally a poor match for highly capable ohmic battery monitoring products?

    Why small, low-cost batteries are generally a poor match for highly capable ohmic battery monitoring products?

    Nov , 18 2021
    The answer isn’t just cost. There are some contrasts between the differing performance expectations and resource environments of two categories of stationary battery system users. It proposes some simple requirements for battery monitoring at cost-constrained sites with modest-sized stationary battery systems and proposes a solution to providing battery health assessment at such sites. Operators o...
    more
  • Why high performance battery monitoring solutions suit sophisticated users?

    Why high performance battery monitoring solutions suit sophisticated users?

    Nov , 18 2021
    The battery monitoring industry has made a strong case that today’s ohmic battery monitoring systems are effective at discovering battery weakness well in advance of complete failure. Such systems are employed to increase a user’s certainty that stationary batteries will deliver their rated output when needed, thus preventing application downtime. The need for uptime at a credit card processing si...
    more
  • Implementing a useful battery assessment system at low cost

    Implementing a useful battery assessment system at low cost

    Nov , 22 2021
    In the battery system industry, some companies provide charger and battery systems to smaller, mission-critical applications; for some years, it has been clear that reducing the impact of battery failure is the best way to increase the user’s overall system reliability. In contrast to power electronics that can achieve MTBF in the range of 1 million hours, all VRLA batteries will fail between “now...
    more
  • How to implement battery monitoring in a deployable product?

    How to implement battery monitoring in a deployable product?

    Nov , 27 2021
    Standalone ohmic battery monitoring systems designed for data center application are not suited for a genset environment. Although ohmic monitors work, they are expensive (estimated at $2,000 for a 24-volt system), time-consuming to install, and require trained personnel to interpret their data output. To achieve widespread adoption in the genset market any battery monitoring technology will need ...
    more
  • What are the recharge cycles phases of a Lead acid battery?

    What are the recharge cycles phases of a Lead acid battery?

    Nov , 27 2021
    The fastest generally accepted way to charge a conventional (lead‐acid or NiCd) battery is with a constant voltage, a current limited battery charger that is capable of both “boost” and “float” output voltages. “Boost” charging applies a higher than normal voltage to the battery early in the charge cycle to charge the battery as quickly as possible. Later, once the battery is charged, charging vol...
    more
  • What is the right duration of Phase 2 of a charging cycle?

    What is the right duration of Phase 2 of a charging cycle?

    Nov , 27 2021
    The duration of Phase 1 is determined by the battery’s depth of discharge, the ratio of charger ampacity to battery capacity, and whether there are parasitic DC loads connected to the system. Although the duration of Phase 1 does vary, we are not concerned with this variation since, once the battery capacity, charger output, and DC loads are installed, we have no means to change the duration of Ph...
    more
  • What is Dynamic Boost and how does it works?

    What is Dynamic Boost and how does it works?

    Dec , 03 2021
    As with the current‐controlled automatic boost system, Dynamic Boost includes no pre‐programmed boost timer. Unlike the current‐controlled automatic boost system, however, Dynamic Boost automatically adjusts boost duration to take into account differing parasitic DC loads and other variables discussed above. The principle behind Dynamic Boost is simple and straightforward. Refer back to Figure 1. ...
    more
  • Why Boost Charging is Necessary?

    Why Boost Charging is Necessary?

    Dec , 06 2021
    Boost charging is a very necessary activity during the operation of a VRLA battery in their life time. In this article we are going to discuss about the necessity of Boost charging in details. The following example helps illustrate two facts about reducing battery recharge time: Cutting recharge time in half is more complex than using a charger that delivers twice as many amperes. Multi‐rate charg...
    more
  • Why flooded SLI batteries in GENSET applications fail sooner and more suddenly than in vehicle applications?

    Why flooded SLI batteries in GENSET applications fail sooner and more suddenly than in vehicle applications?

    Dec , 06 2021
    Even though the batteries perform the identical job of delivering high-rates of current to crank internal combustion engines, the “use model” of batteries employed in gensets is different in one key respect from those employed in vehicles. Batteries used on gensets are charged around the clock, whereas vehicle batteries are charged only intermittently. Flooded SLI batteries used in genset applicat...
    more
  • Why flooded SLI batteries in GENSET applications fail sooner and more suddenly than in vehicle applications?

    Why flooded SLI batteries in GENSET applications fail sooner and more suddenly than in vehicle applications?

    Dec , 06 2021
    Continuous float charging flooded SLI batteries accelerates the deterioration of polyethylene plate separators to a life shorter than that which battery designers intended. When subjected to continuous float charging, the dominant and earliest failure mode tends to be premature failure of the polyethylene separator. Separator failure typically results in short circuits that prevent the battery fro...
    more
  • How a new intermittent charging algorithm addresses premature SLI battery failure?

    How a new intermittent charging algorithm addresses premature SLI battery failure?

    Dec , 06 2021
    A new charging algorithm addresses the problems of short genset battery life and sudden battery failure discussed above, while meeting the regulatory needs to deliver non-stop DC power to critical applications. The principle is simple and straightforward. Emulate the beneficial intermittent vehicle charging regime for which SLI batteries were originally designed, but continue charger operation to ...
    more
first page << 1 ... 3 4 5 6 7 ... 17 >> last page

a total of17 pages

leave a message
welcome to everexceed
If you are interested in our products and want to know more details,please leave a message here,we will reply you as soon as we can.

home

products

about

contact